1.赵瑞,首次火星探测任务先进个人,表彰时间:2022年11月。表彰单位:人力资源社会保障部 国防科工局 工业和信息化部 国资委 中科院 中央军委政治工作部。
2.赵瑞,2021年北京理工大学科技创新计划创新人才,高超声速气动力热环境预示与控制,2021-2023
3.赵瑞,2020年全国流体力学青年学术论坛,受邀大会报告,2020.9.27
4.赵瑞,2019年全国工业流体力学会议,受邀大会报告,2019.8.7-12.
5.赵瑞,2018年第十八届全国激波与激波管学术会议优秀青年论文,中国力学学会激波与激波管专业委员会,国内学术会议优秀论文奖,2018.6.16.
6.赵瑞,2012年度《气体物理-理论与应用》学报青年优秀论文奖,《气体物理-理论与应用》编委会, 青年优秀论文奖, 2012.12.18
7.赵瑞, 第十五届全国计算流体力学会议优秀论文,第十五届全国计算流体力学会议组委会,国内学术会议优秀论文奖, 2012.08.15
8.赵瑞,2017年度澳门新莆京游戏app大厅优秀班主任
9.赵瑞,2016年度澳门新莆京游戏app大厅优秀班主任
10.赵瑞,2014年度北京理工大学优秀青年教师
教学工作:
本科生课程《流场仿真与风洞试验实践》《空气动力学》《Computational fluid dynamics》《气动弹性基础》;
研究生课程《粘性流体力学》
近年来主要发表论文
教材:
1.赵瑞,等《湍流与转捩数值模拟方法》,ISBN:978-7-5640-7626-9,2019.2
论文:
[1]Stabilization mechanisms of various acoustic metasurfaces on the second mode in hypersonic boundary-layer flows, Physics of Fluids,2023, online
[2]Effect of Acoustic Metasurface on Hypersonic-Boundary-Layer Wave Packet, Physics of Fluids,2023, online
[3]Energy growth of vortical, acoustic, and entropic components of the second-mode instability in the hypersonic boundary layer. Physics of Fluids, 2023,35 (5): 054104.
[4]Broadband design of acoustic metasurfaces for the stabilization of a Mach 4 boundary layer flow. Advances in Aerodynamics 4, 15 (2022).
[5]Stabilization effect of acoustic metasurfaces on broadband disturbances in a Mach 6 boundary-layer flow. Physics of Fluids 2022; 34 (12): 121706.
[6]Review of Acoustic Metasurfaces for Hypersonic Boundary Layer Stabilization. Progress in Aerospace Sciences, Vol. 130, No.100808, 2022.
[7]Assessment and Improvement of K-ω-γ Model for Separation-Induced Transition Prediction [J]. Chinese Journal of Aeronautics, 35(11), 219-234, 2022.
[8]Performance Deterioration of Pitot Tubes Caused by In-Flight Ice Accretion: A Numerical Investigation.” International Journal of Aerospace Engineering, Vol. 2021, 5599116, pp. 1–18.
[9]Mechanism of stabilization of porous coatings on unstable supersonic mode in hypersonic boundary layers, Physics of Fluids. 33 (2021) 054105.
[10]Control of Reflected Waves with Acoustic Metasurfaces for Hypersonic Boundary-Layer Stabilization, AIAA Journal, 59(6), 1893–1898, 2021.
[11]Spatial Direct Numerical Simulation of the Hypersonic Boundary-Layer Stabilization using Porous Coatings [J], AIAA Journal, 57(11), 5061-5065, 2019.
[12]Theoretical Modeling of Porous Coatings with Simple Microstructures for Hypersonic Boundary-Layer Stabilization [J], AIAA Journal, 58(2), 981–986, 2020.
[13]Reverse Design of Ultrasonic Absorptive Coating for the Stabilization of Mack Modes [J], AIAA Journal, 57(6),2264-2269,2019.
[14]Impedance-Near-Zero Acoustic Metasurface for Hypersonic Boundary-Layer Flow Stabilization [J], Physical Review Applied, 11, 044015, 2019. (SCI)
[15]Application of improved k-ω-γ transition model to hypersonic complex configurations [J], AIAA Journal , 57(5),2214-2221,2019.
[16]Theoretical Modeling and Optimization of Porous Coating for Hypersonic-laminar-flow Control [J], AIAA Journal,56(8),2942-2946,2018
[17]CFD design of ventilation system for large underground bus terminal in Macau Barrier Gate [J], Journal of Wind Engineering & Industrial Aerodynamics, 179, 1-13, 2018
[18]An investigation of interface conditions inherent in detached-eddy simulation methods [J], Aerospace Science and Technology. 74,46-55,2018.
[19]A combined criteria-based method for hypersonic three-dimensional boundary layer transition prediction [J], Aerospace Science and Technology. 73, 105–117, 2018.
[20]Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer [J]. International Journal of heat and mass transfer 121, 986-998, 2018.
[21]An entropy-assisted shielding function in DDES formulation for the SST turbulence model [J], Entropy. 19, 93, 2017.
[22]Entropy-based detached-eddy simulation of the airwake over a simple frigate shape [J], Advances in Mechanical Engineering, 7(11), 1-13, 2015
[23]Entropy and its application in turbulence modeling [J], Science Bulletin, 59(31),4137-4141, 2014
[24]Towards an entropy-based detached eddy simulation [J], SCIENCE CHINA Physics, Mechanics & Astronomy, 56(10),1970-1980,2013
[25]A new kind Baldwin-Lomax turbulence model under the limit of entropy [J], Chinese Journal of Aeronautics, 26(3),529-534,2013
[26]Scale-Adaptive Simulation of flow over wavy cylinders at a subcritical Reynolds number [J], Acta Mechanica Sinica, 27(5), 660-667, 2011
[27]Comparative assessment of PANS and DES for simulation of flow past a circular cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 134, 65-77, 2014
[28]延迟高超声速边界层转捩技术研究进展[J].航空学报,2021:1-15.
[29]声学超表面抑制高速边界层内宽频不稳定模态研究[J].北京航空航天大学学报,2021:1-14
[30]高超声速飞行器复杂外形转捩预测[J].气体物理,2021,6(05):26-33.
[31]声学超表面抑制第一模态研究[J].航空科学技术,2020,31(11):104-112.
[32]不同舰船机库外形下艉流场特征数值模拟研究[J]. 船舶力学.23 (05):512-522,2019
[33]声学超表面抑制Mack第2模态机理与优化设计[J]. 气体物理. 3(06):35-40, 2018
[34]火星进入器壁面脉动压力环境数值模拟研究[J],宇航学报,39(5),482-490,2018
[35]火星进入器作强迫震荡运动壁面脉动压力数值模拟[J].宇航学报,40(02):148-155,2019.
[36]一种新型的动态RANS/LES混合方法[J],推进技术[J], 38(9),1950-1955,2017
[37]舰船舰面空气流场特性研究进展[J]. 船舶力学. 22(11):1431-1444, 2018
[38]整流罩母线形状对脉动压力环境的影响研究[J],兵工学报,38(5),1020-1026,2017
[39]一种改进的跨声速旋成体壁面脉动压力经验预测公式[J],宇航学报,37(10),1179-1184,2016.
[40]Definition of turbulent boundary-layer with entropy concept [J]. MATEC Web of Conferences, 77: 02005, 2016.
[41]火箭整流罩外气动噪声环境的大涡模拟研究 [J], 宇航学报,36(9),988-994,2015.
[42].比熵增概念及其在湍流模型中的应用[J],空气动力学报,31(3),381-387,2013
[43]Detailed investigation of detached-eddy simulation for the flow past a circular cylinder at Re=3900 [J], Applied Mechanics and Materials Journal, 232,471-476,2012
[44]基于熵限制的Baldwin-Lomax 湍流模型[J],北京航空航天大学学报,38(2),175-190,2012
[45]超声速复杂流动中湍流模型的性能评估[J],北京航空航天大学学报,37(2),202-205,2011
[46]壁面温度条件对边界层转捩预测的影响[J]. 航空学报. 2013,(10):2249-2255.
[47]γ-Reθ模式应用于高速边界层转捩的研究[J]. 空气动力学学报. 2013,(01):120-126.
[48]XY-SAS模型对于分离流动的性能分析[J]. 北京航空航天大学学报. 2010,(04):415-419.
近年来部分项目:
1.2023.01-2026.12,声学超表面对高超声速边界层内扰动模态的作用机理研究(12272049),国家自然科学基金面上项目
2.2021.8-2022.7,XXX作用机理研究,JKW基础加强计划重大基础研究项目
3.2020.10-2022.10,XXX数值模拟软件研究,国防科工局工业软件项目
4.2021.7-2024.7,Investigation on the Control Strategy and Mechanism of Multi-modes in High-speed Boundary-Layer Transition,GRF香港基础研究基金项目
5.2019.01-2022.12,声学超表面对高超声速边界层转捩的抑制机理与应用研究(11872116),国家自然科学基金面上项目
6.2019.12-2023.06,XXX转捩控制机理的理论分析及数值研究,XXX重大基础研究
7.2018.06-2021.06,Investigation and Optimization of Porous Coatings on the Stabilization of Hypersonic Boundary-Layer Flows,GRF香港基础研究基金项目
8.2016.05-2016.12, XXX气动外形设计及气动计算, 北京空间飞行器总体设计部
9.2017.09-2018.06, 再入飞行器气动外形设计及气动仿真技术研究, 北京空间飞行器总体设计部
10.2017.08-2018.10, 着陆巡视器脉动压力计算分析, 北京空间飞行器总体设计部
11.2017.08-2018.08, 着陆巡视器自由飞动态模拟, 北京空间飞行器总体设计部
12.2017.09-2018.07, 火星上升器气动布局优化与局部结构优化设计, 北京空间飞行器总体设计部
13.2017.09-2018.06, 火星上升器动稳定性数值模拟, 北京空间飞行器总体设计部
14.2016.03-2018.03, 新一代载人飞船试验船取压孔位置及压力系数研究, 北京空间机电研究所
15.2015.01-2017.12,一种基于熵概念的湍流边界层判别准则及其在湍流模式中的应用研究(11402024),国家自然科学基金青年项目。